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High-intensity interval aerobic training reduces hepatic very low-density
lipoprotein-triglyceride secretion rate in men
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and Labros S. Sidossis
Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
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Tsekouras YE, Magkos F, Kellas Y, Basioukas KN, Kavouras
SA, Sidossis LS. High-intensity interval aerobic training reduces
hepatic very low-density lipoprotein-triglyceride secretion rate in
men. Am J Physiol Endocrinol Metab 295: E851–E858, 2008. First
published July 29, 2008; doi:10.1152/ajpendo.90545.2008.—A single
bout of strenuous endurance exercise reduces fasting plasma triglyc-
eride (TG) concentrations the next day (12–24 h later) by augmenting
the efficiency of very low-density lipoprotein (VLDL)-TG removal
from the circulation. Although much of the hypotriglyceridemia
associated with training is attributed to the last bout of exercise, the
relevant changes in VLDL-TG metabolism have never been investi-
gated. We therefore examined basal VLDL-TG kinetics in a group of
sedentary young men (n � 7) who underwent 2 mo of supervised
high-intensity interval training (3 sessions/wk; running at 60 and 90%
of peak oxygen consumption in 4-min intervals for a total of 32 min;
gross energy expenditure: 446 � 29 kcal) and a nonexercising control
group (n � 8). Each subject completed two stable isotope-labeled
tracer infusion studies in the postabsorptive state, once before and
again after the intervention (�48 h after the last exercise bout in the
training group). Peak oxygen consumption increased by �18% after
training (P � 0.05), whereas body weight and body composition were
not altered. Fasting plasma VLDL-TG concentration was reduced
after training by �28% (P � 0.05), and this was due to reduced
hepatic VLDL-TG secretion rate (by �35%, P � 0.05) with no
changes (�5%, P � 0.7) in VLDL-TG plasma clearance rate and the
mean residence time of VLDL-TG in the circulation. No significant
changes in VLDL-TG concentration and kinetics were observed in the
nonexercising control group (all P � 0.3). We conclude that a short
period of high-intensity interval aerobic training lowers the rate of
VLDL-TG secretion by the liver in previously sedentary men. This is
different from the mechanism underlying the hypotriglyceridemia of
acute exercise; however, it remains to be established whether our
finding reflects an effect of the longer time lapse from the last exercise
bout, an effect specific to the type of exercise performed, or an effect
of aerobic training itself.

isotope; triacylglycerol; endurance; physical activity; chronic exercise

DISTURBANCES IN LIPID METABOLISM leading to unfavorable alter-
ations in the plasma lipid profile increase the risk for coronary
heart disease (CHD) (42). Regular exercise training favorably
modifies most of the lipid-related atherosclerotic risk factors
(14), and this likely contributes to the much lower CHD risk in
physically active individuals compared with their sedentary
counterparts (4). Acute and chronic exercise substantially re-
duce plasma triglyceride (TG) concentrations by 15–50% (10).
Most of the hypotriglyceridemic effect associated with training
is attributed to the last bout of exercise (24) rather than being

the result of metabolic adaptations to repeated exercise ses-
sions (22, 23).

A single bout of strenuous endurance exercise lowers fasting
plasma TG concentrations �12–24 h after its cessation, and
this effect lasts for 2–3 days (9, 55), provided that sufficient
energy be expended during exercise (2, 8, 58, 63). Exercise-
induced TG-lowering predominantly reflects reduced very low-
density lipoprotein (VLDL)-TG concentrations, in both the
fasted and fed states (2, 20, 39). We have recently demon-
strated that a single, prolonged bout of moderate-intensity
endurance exercise (90–120 min at 60% of peak oxygen
consumption, V̇O2peak) lowers fasting plasma VLDL-TG con-
centrations the next morning by augmenting the removal effi-
ciency of VLDL-TG from the circulation (38, 57). It is cur-
rently not known whether the same mechanism mediates the
hypotriglyceridemia of chronic exercise. Data are available
only in animals, and relevant studies indicate that strenuous
aerobic exercise training is associated with reduced rate of
VLDL-TG secretion by the liver in vivo (41); liver perfusion
studies confirm this notion in situ and in vitro (17, 62).

To examine this possibility in humans, we measured basal
VLDL-TG kinetics before and after a short period of high-
intensity aerobic interval training or no exercise in healthy
sedentary men, in a randomized controlled fashion.

MATERIALS AND METHODS

Subjects. Sixteen young (age: 20–40 yr), nonobese (body mass
index: 20–30 kg/m2) men volunteered for the study. Their body
weight was self-reported stable for at least 2 mo before enrollment.
Subjects were healthy, as indicated by comprehensive history, phys-
ical examination, and standard blood tests, and were recreationally
active but untrained (participated in moderate-intensity physical ac-
tivities �2 times/wk). None of them smoked tobacco or was taking
medications known to affect lipid metabolism. The study protocol was
approved by the Human Studies Committee of Harokopio University,
Athens, Greece, and written informed consent was obtained from all
participants. Subjects refrained from vigorous exercise for at least 1
wk before any of the study procedures took place; these are shown
schematically in Fig. 1.

Anthropometric, body composition, and cardiopulmonary assess-
ment. Physical testing was carried out �1 wk before the start of the
2-mo intervention and again 3 days after its completion. Body weight
and height were measured to the nearest 0.1 kg and 0.5 cm, respec-
tively, and body mass index was calculated. Total body fat mass and
fat-free mass were determined by dual-energy X-ray absorptiometry
(model DPX-MD; Lunar, Madison, WI). V̇O2peak was determined by
a submaximal incremental brisk walking test (modified Balke tread-
mill protocol) (1). Subjects warmed up for 5 min and were familiar-
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ized with the treadmill (Technogym Runrace, Gambettola, Italy).
After warm-up, treadmill speed was kept constant, and grade was
increased by 2% every 3 min. Expiratory gases were collected
continuously by using a breath-by-breath gas analyzer system
(Vmax229D; Sensormedics, Yorba Linda, CA). The test was termi-
nated at 80% of heart rate reserve, and V̇O2peak was predicted from the
oxygen consumption/heart rate relationship (1).

Experimental protocol. Participants were randomly assigned to a
nonexercising control group (n � 8) and an exercise training group
(n � 8); one subject from the training group dropped off after the 2nd
wk of training, and his data is thus excluded from all analyses.
Subjects in the training group underwent 2 mo of supervised high-
intensity interval training (31), consisting of three bouts of aerobic
exercise per week for 8 wk. Each training session involved running on
the treadmill (Technogym Runrace, Gambettola, Italy) at level grade
and adjustable speed. After 5 min of warm-up, subjects alternated four
times between 4 min at 60% of pretraining V̇O2peak and 4 min at
90% of pretraining V̇O2peak for a total of 32 min (i.e., 16 min at
each intensity), with no rest in between. Appropriate speed for each
intensity had been verified �4 days before the beginning of the
intervention (2–3 days after the baseline V̇O2peak test). Heart rate was
monitored continuously during each training session by using a
telemetric heart rate monitor (Polar Accurex Plus) to estimate the
energy expenditure of exercise (27). Exercise was always performed
in the evening (1600–2000), at least 3 h after meal consumption,
except from the last session, which was conducted after a light
breakfast in the morning (�0900). Subjects in the control group were
instructed to maintain their normal physical activity habits for the
duration of the study but to completely refrain from exercise during
the last week of the 2-mo period.

Upon entry in the study, subjects received instructions on how to
record food and beverage intake and provided a detailed recording of
all nutrient intake for the 3 days preceding the first infusion study.
They were then instructed to reproduce the exact same diet for the 3
days leading up to the second infusion study. None of the subjects
reported any deviation from the dietary plan. Subjects in the training
group were instructed to self-regulate their dietary intake during the
training period to avoid weight loss or gain, whereas those in the
control group were instructed to maintain their normal dietary habits.
All subjects abstained from alcohol and caffeine intake for 2 days
before each isotope infusion study and consumed dinner by �2100 on
the previous evening. Thereafter, they remained fasted for �12 h
before starting the tracer infusion the next morning.

Tracer infusion study. Each subject underwent two stable isotope-
labeled tracer infusion studies in the postabsorptive state in the
morning, once before (1 day before the first exercise bout in the
training group) and again after the intervention (2 days after the last
exercise bout in the training group). Subjects arrived at the laboratory
at 0800 with minimal physical activity and after having fasted over-
night. One catheter was inserted in a forearm vein to administer stable
isotope-labeled tracers, and a second catheter was inserted in a
contralateral hand vein for blood sampling; the latter was kept warm

with a heating pad. Catheters were flushed with 0.9% NaCl solution to
maintain patency. Subjects were allowed to relax and get used to the
catheters for an additional hour [time (t) � 0; �48 h after completion
of the last exercise bout in the training group] before a baseline blood
sample was taken to determine fasting plasma lipid concentrations and
background tracer-to-tracee ratio (TTR) of glycerol in VLDL-TG.
Immediately after, a bolus of [1,1,2,3,3-2H5]glycerol (75 �mol/kg
body wt; Goss Scientific Instruments, Essex, UK), dissolved in 0.9%
NaCl solution, was administered through the catheter in the forearm
vein, and blood samples were obtained at 15 min and then every hour
after tracer injection for 6 h, to determine glycerol TTR in VLDL-TG.
V̇O2 and V̇CO2 were measured for 15 min by using a gas analyzer
system equipped with a ventilated hood (Vmax229D; Sensormedics),
once before and then hourly after tracer injection, and data were
averaged. For the entire duration of the isotope infusion study,
subjects remained fasted in the laboratory in a sitting position. Water
consumption was allowed ad libitum.

Sample collection and analysis. Blood samples were collected in
precooled tubes containing EDTA as anticoagulant and placed on ice
immediately, and plasma was separated by centrifugation within 30
min of collection. Aliquots of plasma (�3 ml) were transferred to
plastic culture tubes and kept in the refrigerator for immediate isola-
tion of VLDL. The remaining plasma samples were stored at �80°C
until further analyses.

The VLDL fraction was prepared as previously described (57).
Briefly, �2 ml of plasma were transferred to Quick Seal Centrifuge
Polyallomer Tubes (Beckman Instruments, Palo Alto, CA), overlaid
with a NaCl/EDTA solution (d � 1.006 g/ml), and spun for 3 h at
90,000 revolutions/min at 4°C, in an Optima TLX ultracentrifuge
equipped with the fixed-angle TLN-100 rotor (Beckman Instruments).
The top layer, containing VLDL, was removed and collected quanti-
tatively by tube slicing (CentriTube slicer; Beckman Instruments) and
stored at �80°C until analyses. VLDL-TG were isolated by thin-layer
chromatography and hydrolyzed, and VLDL-TG-glycerol was deri-
vatized with heptafluorobutyric anhydride (57). The TTR of glycerol
in VLDL-TG was determined by gas chromatography-mass spectrom-
etry (MSD 5973 system; Hewlett-Packard, Palo Alto, CA) by selec-
tively monitoring the ions at mass-to-charge ratios 467 and 472 (43).
Calibration curve for standards with known isotopic enrichment was
used.

The concentrations of total TG, VLDL-TG, and free fatty acids
(FFA) in plasma were determined by using commercially available
enzymatic kits (Alfa Wassermann Diagnostics Technologies, West
Caldwell, NJ) on an automated analyzer (ACE Schiapparelli Biosys-
tems, Fairfield, NJ). Paired samples for each volunteer were analyzed
in the same batch. Total plasma TG and FFA concentrations were
measured at t � 0; VLDL-TG concentration was measured throughout
the 6-h sampling period, and data were averaged.

Calculations. Resting metabolic rate (RMR, kcal/min) and whole
body substrate oxidation rates in the basal state were calculated based
on respective V̇O2 and V̇CO2 measurements (12). The fractional
turnover rate (FTR) of VLDL-TG was determined by using the

Fig. 1. Schematic representation of the study
protocol.
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monoexponential approach (32). The total rate of VLDL-TG secretion
(�mol/min), which represents the total amount of VLDL-TG secreted
by the liver, was calculated by multiplying the FTR of VLDL-TG
(pools/min) by the steady-state concentration of VLDL-TG in plasma
(�mol/ml) and the plasma volume (ml); plasma volume was assumed
to be equal to VLDL-TG volume of distribution and was calculated as
55 ml/kg fat-free mass (5). We also calculated hepatic VLDL-TG
secretion rate per unit of plasma (�mol � l�1 �min�1), as FTR times
concentration, to account for potential confounding due to body
composition and plasma volume changes over the course of the
intervention. The plasma clearance rate of VLDL-TG (ml/min), which
is an index of the efficiency of VLDL-TG removal from the circula-
tion via all possible routes, was calculated by dividing the rate of
VLDL-TG disappearance from plasma, which equals total VLDL-TG
secretion rate under steady-state conditions, by the concentration of
VLDL-TG in plasma. The mean residence time (MRT) of VLDL-TG
in the circulation (min) was calculated as 1/FTR.

Statistical analysis. Analysis was carried out with SPSS version
16.0 (SPSS, Chicago, IL). All data sets were tested for normality
according to Kolmogorov-Smirnov. Total plasma TG concentration
and whole body carbohydrate and fat oxidation rates were not nor-
mally distributed and were thus log-transformed for analysis and
back-transformed for presentation as means and 95% confidence
intervals. Results for the remaining parameters are presented as
means � SE. Data were analyzed by using repeated-measures
ANOVA, with time as within-subject factor (before vs. after the
intervention) and group as between-subject factor (control vs. train-
ing). When significant interactions between time and group emerged
(i.e., for V̇O2peak, plasma VLDL-TG concentration, and hepatic
VLDL-TG secretion rates), further analysis was carried out with
Student’s paired t-test to evaluate the effect of time within each group
and Student’s independent t-test (preceded by Levene’s test to assess
the equality of group variances on each dependant variable) to
evaluate differences between the training and control groups before
and after the intervention. Statistical significance was set at P � 0.05.
Based on the reproducibility of basal VLDL-TG kinetics, our sample
size would allow us to detect changes �25% in magnitude, which are
considered physiologically relevant (35).

RESULTS

Training program, body composition and V̇O2peak. Subjects
in the training group exercised at an average heart rate of
158 � 5 beats/min, representing 82 � 2% of their age-
predicted maximum heart rate. The total energy expenditure of
the whole exercise training program was 10,704 � 690 kcal,
i.e., 446 � 29 kcal for each of the 24 sessions.

The training and control groups did not differ at baseline in
body weight, body composition, and V̇O2peak (Table 1). Fol-
lowing the intervention, V̇O2peak (P for interaction � 0.001)
increased significantly in the training group (by �18%, P �
0.002) and remained unchanged in the control group (P �

0.35); body weight and body composition were not affected by
the intervention (Table 1).

Metabolic rate and substrate oxidation in the basal state.
There were no significant differences between groups, no
significant effects of the intervention, and no significant inter-
actions between time and group with respect to respiratory
variables, RMR, and whole body substrate oxidation rates (all
P � 0.05) (Table 2).

Plasma lipid concentrations in the fasting state. Plasma
FFA, total TG, and VLDL-TG concentrations did not differ
between groups at baseline (Table 3). Following the interven-
tion, plasma FFA and total TG concentrations were not altered
in either group; however, there was a significant interaction
between time and group for VLDL-TG concentration (P �
0.026) that was reduced after the intervention in the training
group (by �28%, P � 0.042) but not in the control group (P �
0.295) (Table 3). As a result, VLDL-TG concentration was
significantly lower in the training than in the control group
postintervention (P � 0.031).

Basal VLDL-TG kinetics. The FTR of VLDL-TG did not
differ between groups at baseline (control: 0.373 � 0.028
pools/h, training: 0.407 � 0.056 pools/h; P � 0.571) and was
not affected by the intervention (P � 0.904) in either group
(control: 0.377 � 0.032 pools/h, training: 0.396 � 0.043
pools/h); there was no interaction between time and group
(P � 0.829).

A significant interaction was detected for hepatic VLDL-TG
secretion, whether expressed as total secretion rate (P � 0.031)
or secretion rate per unit of plasma (P � 0.045); this was
reduced after the intervention in the training group (by �35%,
P � 0.05) but not in the control group (P � 0.39) (Fig. 2).
Hence hepatic VLDL-TG secretion rate was significantly lower
in the training than in the control group postintervention (P �
0.004) but was not different at baseline (P � 0.55) (Fig. 2).

VLDL-TG plasma clearance rate and the MRT of VLDL-TG
in the circulation were not different between groups at baseline
(P � 0.553 and P � 0.892, respectively), nor were they
affected by the intervention (P � 0.955 and P � 0.734,
respectively); no interactions between time and group were
detected either (P � 0.755 and P � 0.836, respectively)
(Fig. 3). Values in both groups after the intervention were
within 4% of respective baseline values.

DISCUSSION

We examined basal VLDL-TG kinetics before and after
short-term, high-intensity aerobic interval training in healthy,
sedentary young men and observed that training, in the absence

Table 1. Body composition and V̇O2peak in the control and training groups, before and after the intervention

Control (n � 8) Training (n � 7)

Before After Before After

Weight, kg 76.0�2.0 76.2�2.5 81.0�5.6 79.3�5.2
Body mass index, kg/m2 23.4�0.6 23.4�0.7 25.2�1.2 24.6�0.9
Body fat, %body wt 17.3�1.4 16.9�1.4 19.0�1.8 19.2�1.9
Fat mass, kg 13.1�1.2 12.9�1.3 15.2�1.3 14.9�1.4
Fat-free mass, kg 62.8�2.0 63.3�2.1 65.8�5.4 64.4�5.2
V̇O2peak, l/min 2.98�0.38 2.90�0.34 3.03�0.39 3.52�0.39*
V̇O2peak, ml �kg�1 �min�1 39.8�5.6 38.4�4.6 36.7�2.7 43.9�2.6*

Values are means � SE; n, no. of subjects. V̇O2peak, peak oxygen consumption. *Significantly different from baseline value (P � 0.05).
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of changes in body weight and body composition, reduces
fasting plasma VLDL-TG concentration by suppressing he-
patic VLDL-TG secretion rate, without affecting the plasma
clearance rate and the MRT of VLDL-TG in the circulation,
when measurements are made �48 h from the last exercise
session. This is consistent with results from available studies in
exercise-trained animals (17, 41, 62) but directly contrasts
results from our previous studies examining the effect of a
single bout of prolonged endurance exercise on VLDL-TG
kinetics the next morning (38, 57). We cannot attribute our
present findings to exercise training per se, to the type of
exercise performed, or, perhaps, to the greater time lapse after
the last bout of exercise. Nevertheless, inclusion of a nonex-
ercising control group in which we observed no changes in
VLDL-TG concentration and kinetics strengthens our conclu-
sion that, under these circumstances, exercise has the potential
to suppress the rate of VLDL-TG secretion by the liver in
humans in vivo.

Fasting plasma TG concentrations are reduced �12–24 h
after a single bout of prolonged endurance exercise and until
2–3 days later (2, 9, 55), and the same holds true after the last
exercise bout in the trained state (22, 60). Our inability to
observe a significant decrease in total plasma TG concentration
2 days after the last exercise training session is probably due to
a type II statistical error because we measured total plasma TG
concentration only in a single sample, before tracer injection,
and this is associated with severalfold greater intraindividual
variability compared with our VLDL-TG concentration mea-
surement derived from serial samples (48); this, we believe, is
responsible for the apparent discrepancy between VLDL-TG
and total plasma TG concentrations. It is well established that
exercise-induced reduction in total plasma TG concentration is
predominantly due to decreased VLDL-TG concentration (2,
20, 39), and we did observe a significant reduction in
VLDL-TG concentration after training.

We have previously demonstrated that fasting hypotriglyc-
eridemia in response to a single bout of strenuous whole body

exercise, whether endurance or resistance, results from in-
creased VLDL-TG plasma clearance rate (by �25–40% com-
pared with rest), which indicates enhanced efficiency of
VLDL-TG removal from plasma �12–24 h after exercise
cessation (38, 56, 57). This is likely related to the secretion of
fewer but TG-richer and therefore possibly also larger VLDL
particles after exercise (38); in vivo studies in humans (36, 53)
and animals (54, 61) indicate that the removal of TG from the
core of TG-rich, large VLDL particles is more efficient than
that from TG-poor, small VLDL, possibly because increasing
TG content and size of lipoprotein particles enhances their
susceptibility to hydrolysis by lipoprotein lipase (LPL) (13). In
addition, LPL protein mass and activity in skeletal muscle, but
not adipose tissue, increase transiently within 6–8 h after
exercise and remain elevated for some 16–20 h postexercise
(29, 49, 50); this could further facilitate VLDL-TG removal
from the circulation the next day, at least across the previously
exercised muscles (28, 39, 50).

In this study, we measured VLDL-TG kinetics �48 h after
the last bout of exercise and found no changes in the plasma
clearance rate and the MRT of VLDL-TG, whereas fasting
plasma VLDL-TG concentration and the rate of hepatic
VLDL-TG secretion were �30% lower compared with base-
line, pretraining values. Other investigators, using the intrave-
nous fat tolerance test, have shown that lower plasma TG
concentrations 1 day after prolonged endurance exercise coin-
cide with increased clearance rate of exogenous fat, but this is
not the case 2 days after exercise, when plasma TG concen-
trations are still reduced compared with preexercise values but
clearance of exogenous fat is not different (2). Furthermore,
exercise-induced increases in skeletal muscle LPL mass and
activity are not evident beyond 20–30 h after exercise cessa-
tion (29, 49, 50). These observations indicate that the greater
time lapse from the last bout of exercise could be responsible
for our divergent findings �12–24 h after acute exercise, when
low plasma VLDL-TG concentration is due to increased
VLDL-TG plasma clearance rate (38, 56, 57) as opposed to

Table 2. Indirect calorimetry in the basal state in the control and training groups before and after the intervention

Control (n � 8) Training (n � 7)

Before After Before After

Oxygen consumption, ml/min 225�14 239�5 244�11 241�10
Carbon dioxide production, ml/min 180�11 193�4 202�11 189�11
Respiratory exchange ratio 0.80�0.01 0.81�0.01 0.82�0.02 0.78�0.02
Resting metabolic rate, kcal/min 1.07�0.07 1.14�0.02 1.17�0.05 1.14�0.05
Carbohydrate oxidation, mg/min 62 (40, 96) 74 (53, 103) 58 (12, 289) 23 (2, 234)
Fat oxidation, mg/min 51 (37, 71) 57 (47, 69) 45 (26, 77) 64 (50, 83)

Values are means � SE, except for substrate oxidation rates where means and 95% confidence intervals are provided.

Table 3. Fasting plasma lipid concentrations in the basal state in the control and training groups, before and after
the intervention

Control (n � 8) Training (n � 7)

Before After Before After

Free fatty acids, mmol/l 0.41�0.03 0.44�0.05 0.52�0.09 0.57�0.07
Total plasma triglyceride, mmol/l 0.83 (0.68, 1.01) 0.87 (0.73, 1.05) 0.86 (0.55, 1.33) 0.82 (0.43, 1.54)
VLDL-triglyceride, mmol/l 0.46�0.06 0.51�0.05 0.40�0.11 0.29�0.08*†

Values are means � SE, except for total plasma triglyceride, where means and 95% confidence intervals are provided. VLDL, very low-density lipoprotein.
P � 0.05, significantly different from baseline value (*) and significantly different from respective value in the control group (†).
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�48 h postexercise in the trained state (present study), when
low plasma VLDL-TG concentration is due to decreased he-
patic VLDL-TG secretion rate. This possibility, if indeed true,
implies that different mechanisms may be mediating exercise-
induced hypotriglyceridemia over the first couple of days of
recovery.

Studies in rodents suggest that the lower hepatic VLDL-TG
secretion rate of exercise-trained compared with pair-fed sed-
entary animals in vivo is at least partly mediated by differences
in substrate availability, the most prominent being the lower
plasma FFA concentration in the trained state (41). In humans,
FFA concentration and rate of appearance in plasma, i.e., FFA
availability to all tissues of the body (including the liver), are
greatly augmented 12–16 h after a single bout of exercise by
�50%, but hepatic VLDL-TG secretion rate does not increase
(37, 38, 56), possibly because most of the additional FFA are
utilized for energy production (38, 56) and restoration of
skeletal muscle TG stores (29). This illustrates an uncoupling
of hepatic VLDL-TG secretion from plasma FFA availability
in the postexercise period. However, contrary to what is ob-
served the day after a single bout of exercise (37, 38) or 1 day
after the last exercise training session (46), several weeks of
endurance training do not affect basal FFA rate of appearance
and FFA concentration in plasma when measurements are
made 36–72 h from the last exercise bout (15, 16, 25, 26, 51).
These observations collectively suggest that exercise-induced
augmentation of plasma FFA availability may persist for up to
�24 h after exercise but not for longer (i.e., �36 h), which is
consistent with our finding that training did not affect fasting
plasma FFA concentrations 2 days after the last exercise bout.

At the same time, i.e., �48 h after the last training session,
we observed that basal hepatic VLDL-TG secretion rate was

reduced significantly. The possibility cannot be excluded that
exercise downregulates VLDL-TG secretion by the liver by
some as yet unknown mechanism, but this effect is not readily
evident the day after exercise (�24 h) because the higher
plasma FFA availability induces a compensatory increase in
VLDL-TG secretion (33), thereby preventing any change in
hepatic VLDL-TG secretion rate from manifesting (37, 38, 56).
At later time points (�36 h postexercise), however, plasma
FFA availability is not increased, and this could unmask the
exercise-induced lowering of VLDL-TG secretion by the liver,
which was observed in this study. According to this hypothesis,
the net balance of the metabolic interplay between the amount
of FFA available after exercise and their use in pathways other
than VLDL-TG synthesis and secretion in the liver assumes a
key role. However, this is likely not the primary mechanism for
the observed training-induced lowering of hepatic VLDL-TG
secretion �48 h postexercise, because we found no changes in
basal fat oxidation and plasma FFA concentration, and skeletal
muscle TG stores should have been completely restored by that
time (29).

Although there was considerable variability in our indirect
calorimetry measurements between and within groups, previ-
ous studies also report no significant training-induced changes
in basal energy and substrate metabolism when assessed
�24–72 h after the last bout of exercise (15, 16, 30, 51). It is
also unlikely that training caused a selective increase in hepatic
fatty acid oxidation and ketogenesis, thereby redirecting intra-
hepatic fatty acids away from VLDL-TG synthesis and secre-
tion. Endurance training in animals does not alter malonyl-

-1
-1

Fig. 2. Hepatic secretion rate of very low-density lipoprotein-triglyceride
(VLDL-TG) in the basal state, expressed as total secretion rate (top) and
secretion rate per unit of plasma (bottom), in the control and training groups
before and after the intervention. Values are means � SE. P � 0.05,
significantly different from baseline value (*) and significantly different from
respective value in the control group (†).

Fig. 3. Plasma clearance rate (top) and mean residence time (bottom) of
VLDL-TG in the basal state, in the control and training groups before and after
the intervention. Values are means � SE.
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CoA content in the liver (3) and the activity of hepatic carnitine
palmitoyltransferase-1 (the rate-limiting enzyme in mitochon-
drial fatty acid oxidation) and its sensitivity to inhibition by
malonyl-CoA (21) in the basal state, �12–24 h postexercise.
Furthermore, although in vitro studies in animals indicate a
reciprocal effect of exercise training on hepatic ketogenesis
and VLDL-TG secretion (17), human studies indicate that the
lower plasma TG concentration in the trained state, �48 h after
the last bout of exercise, does not coincide with any differences
in �-hydroxybutyrate concentration (60), and increased �-
hydroxybutyrate concentration one day after a single bout
of exercise is not associated with any changes in hepatic
VLDL-TG secretion (56). These observations argue against
possible training-induced changes in hepatic fatty acid oxida-
tion and ketogenesis being the primary factor mediating the
reduction in basal VLDL-TG secretion rate 2 days after the last
exercise bout. That being said, the effect of exercise on the key
enzyme involved in hepatic VLDL assembly, i.e., microsomal
TG transfer protein, is not known.1

We cannot ascertain whether aerobic training in itself is
responsible for our present findings. There is little doubt that
the majority of the hypotriglyceridemic effect associated with
training is due to the last bout of exercise (24) and is acutely
(within �60 h) reversed by detraining (22, 23). However, the
mechanisms behind these observations have never been inves-
tigated, and the possibility that training alters the VLDL-TG
metabolism response to acute exercise cannot be excluded.
Insulin sensitivity is increased for at least 48 h after acute and
chronic exercise (40, 45), but whether or not and how this is
related to the exercise-induced changes in VLDL-TG metabo-
lism during the first couple of days of recovery is not clear.
Enhanced insulin sensitivity would be consistent with reduced
hepatic VLDL-TG secretion rate (19, 33, 34), but this is not
observed 12–24 h after exercise (37, 38, 56, 57), perhaps due
to the counteracting effect of increased postexercise FFA
availability hypothesized above, since much of the suppressing
effect of insulin on hepatic VLDL-TG secretion is mediated by
the reduction in plasma FFA availability (34). However, a state
of enhanced insulin sensitivity �48 h after exercise (40, 45),
which in addition would be more pronounced after training
than after a single exercise session (45), and the absence of any
compensatory effect from FFA at that time could lead to a
lowering of hepatic VLDL-TG secretion rate, consistent with
our observations. Another possible explanation could relate to
the effect of training of liver fat. Observational studies in
humans suggest that increased habitual physical activity is
inversely associated with intrahepatic TG content (44), and
endurance training in animals reduces liver fat accumulation

measured �48 h after the last bout of exercise (18, 47). A
possible training-induced reduction in intrahepatic TG content
would be consistent with the lowering of hepatic VLDL-TG
secretion in our study because intrahepatic TG content is
strongly and positively associated with basal hepatic VLDL-TG
secretion rate in humans, at least within the normal range of
liver fatness (11). A single bout of exercise may also reduce
intrahepatic TG content immediately postexercise (52), but the
time course of liver TG repletion is not known.

It is interesting to refer to the type of exercise performed
(i.e., high-intensity interval training) as a possible modulating
factor of the VLDL-TG metabolism response to exercise. We
observed a significant reduction in fasting plasma VLDL-TG
concentration by �30% compared with baseline, �48 h after
the last bout of training. The magnitude of this decrease is the
same as that we observed 12–24 h after a single, prolonged
bout of moderate-intensity endurance exercise (38, 57), but the
estimated total energy expenditure of each training session in
this study (�450 kcal) is much lower than that (900–1,200
kcal) of acute exercise studied previously (38, 57). In fact, a
less prolonged bout of moderate-intensity endurance exercise,
with an energy cost of �600 kcal, still 33% higher than that in
the present study, had no effect on basal VLDL-TG concen-
tration and kinetics the next morning (37). It is well established
that the hypotriglyceridemic effect of exercise (both its mag-
nitude and duration) depends on the total exercise energy
expenditure (2, 8, 58, 63), and exercise time and intensity are
interchangeable when it comes to the magnitude of plasma TG
lowering, provided that the exercise-induced total energy ex-
penditure be held constant (7, 59). Whether the same mecha-
nisms are responsible for hypotriglyceridemia under these
conditions is not known, but these observations along with our
findings indicate either that training lowers the energy expen-
diture threshold required for hypotriglyceridemia to manifest
or that high-intensity interval exercise is much more effective
than moderate-intensity continuous exercise in this respect.
Available evidence suggests that high-intensity aerobic interval
training is far more volume-effective than traditional training
in increasing physical fitness and performance parameters (31),
as also witnessed in the present study (�18% increase in
V̇O2peak after 2 mo), and may in fact induce the same metabolic
adaptations as traditional endurance training at only one-tenth
of the total exercise energy expenditure (6). Therefore, it is
possible that the relationship between hypotriglyceridemia and
exercise-induced energy expenditure, and perhaps also the
underlying mechanisms, may be different for different kinds of
exercise.

In summary, we examined basal VLDL-TG metabolism
before and after 2 mo of high-intensity aerobic interval training
in healthy nonobese men, and in a nonexercising control group.
Our data indicate that the trained state, in the absence of
changes in body weight and body composition, is associated
with lower fasting plasma VLDL-TG concentration secondary
to reduced basal VLDL-TG secretion rate by the liver. It is
unclear whether this represents an effect of aerobic training per
se, an effect specific to the type of exercise performed, or
simply an effect of the greater time lapse after the last bout of
exercise.
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